The DarkLight Experiment: Searching for Dark Forces at the JLab FEL

Charles Epstein, for the DarkLight Collaboration

MIT, Jefferson Lab, Arizona State University, Bonn University, Catholic University DC, Giessen University, Hampton University, CEA-Saclay, Stonybrook University, Temple University

June 11, 2014

Outline

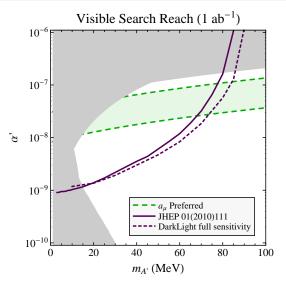
- Motivation
- DarkLight Overview
- Design Overview
- 4 Software Development
- 5 Status and Summary

Outline

- Motivation
- 2 DarkLight Overview
- 3 Design Overview
- 4 Software Development
- Status and Summary

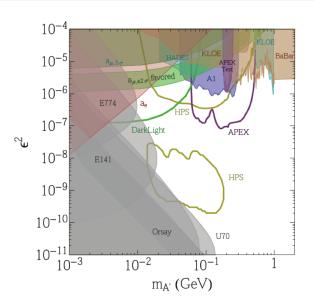
What is DarkLight?

- DarkLight is a proposed experiment:
- \bullet Searching in the lowest dark photon mass regime: 10-100 $\,\text{MeV}/c^2$


What is DarkLight?

- DarkLight is a proposed experiment:
- \bullet Searching in the lowest dark photon mass regime: 10-100 MeV/c^2
- Could resolve $(g-2)_{\mu}$: much of preferred region excluded at higher masses

What is DarkLight?

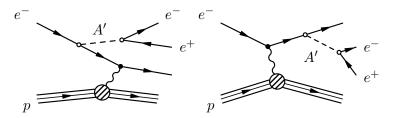

- DarkLight is a proposed experiment:
- \bullet Searching in the lowest dark photon mass regime: 10-100 MeV/c^2
- Could resolve $(g-2)_{\mu}$: much of preferred region excluded at higher masses
- ullet Will utilize the 100 MeV e^- beam of the Jefferson Lab Free-Electron Laser incident on a ${
 m H}_2$ gas target
- Model-independent, kinematically-redundant exclusive search

DarkLight Parameter Space: $10-100 \text{ MeV/c}^2$

Gray: excluded by theory/experiment Green: favored to resolve muon g-2 anomaly

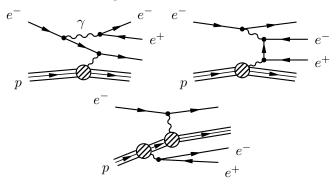
Comparison of Experiments

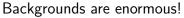
Plot: Rouven Essig 5/24

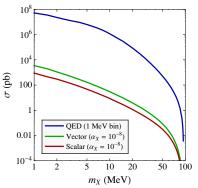

Outline

- Motivation
- 2 DarkLight Overview
- Design Overview
- Software Development
- Status and Summary

Dark Interactions in e-p Collisions


DarkLight will search for a dark photon in electron-proton scattering


- \rightarrow Reconstruct tracks of all four final state particles
- \rightarrow Invariant mass of the e^+/e^- pair gives the mass of the A'


Dark Interactions in e-p Collisions

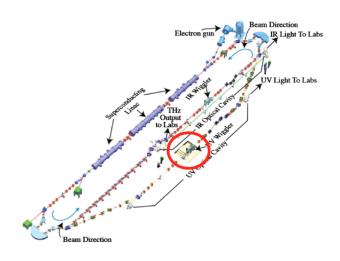
Backgrounds are enormous!

Dark Interactions in e-p Collisions

Small resonance on an already rare process

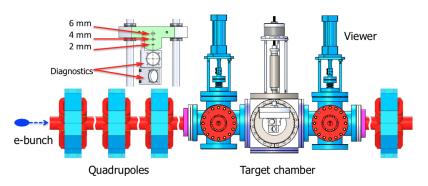
ightarrow need exceptionally high luminosity

$$ightarrow \mathcal{L} = 2 imes 10^{36} \ \text{cm}^{-2} \ \text{s}^{-1}$$


Goal: 1 ab^{-1} in one week

The Jefferson Lab Free Electron Laser

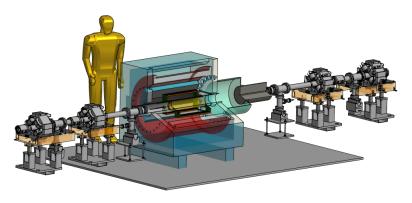
- Next-generation Energy Recovering Linac (ERL)
- 100 MeV, 10mA \rightarrow 1 MW of power
- Provides intensity necessary to observe a dark photon


JLab FEL Layout

DarkLight can be installed in the UV wiggler pit

ERL Beam Test, July 2012

Megawatt 100 MeV e^- beam through a 2mm aperture


- Only ppm losses over 7h
- FEL has the stability required for DarkLight
- PRL (111, 164801), October 2013

Outline

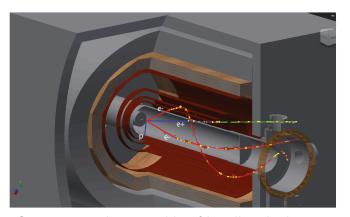
- Motivation
- 2 DarkLight Overview
- Oesign Overview
- Software Development
- 5 Status and Summary

The DarkLight Experiment

Proposed Phase 1 Layout

- ullet 100 MeV e^- on an internal gas H_2 target in 0.5T solenoid
- Silicon recoil proton detector inside target chamber
- Target chamber surrounded by lepton tracker

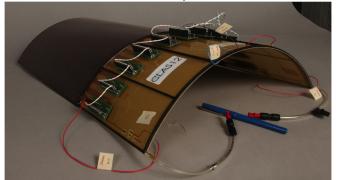
Magnetic Field


Existing solenoid from E906 at BNL

- 0.5 T solenoid with rectangular yoke
- Inner diameter ∼70cm
- Currently located at Stony Brook University

Lepton Tracker

Four cylindrical tracking layers



Constraints: thin, capable of handling high rates

MicroMegas

Pursuing the use of "Micro-Mesh Gaseous Structures"

MicroMegas –as tracker planes

New tracking technology being developed at CEA-Saclay

- Similar to GEMs, but more robust
- Installation underway at CLAS (JLab) for 12 GeV upgrade

Noteworthy

With this detector, can also measure:

- Elastic e-p cross-section at high θ and low Q^2
 - \rightarrow proton magnetic radius
- A' invisible decays

Noteworthy

With this detector, can also measure:

- Elastic e-p cross-section at high θ and low Q^2
 - \rightarrow proton magnetic radius
- A' invisible decays

Developing:

- Track reconstruction at high rates
- Detectors, DAQ, and software to perform this tracking

Outline

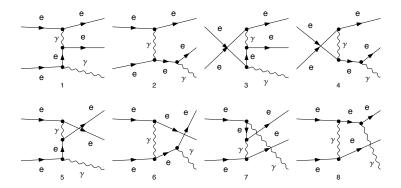
- Motivation
- 2 DarkLight Overview
- 3 Design Overview
- 4 Software Development
- Status and Summary

DarkLight Software Development

Simulations to:

- Analyze signal and backgrounds
- Prepare tracking and reconstruction software

 $\mathsf{Goal} \to \mathsf{have} \ \mathsf{algorithms} \ \mathsf{prepared} \ \mathsf{in} \ \mathsf{advance}$


Physics processes:

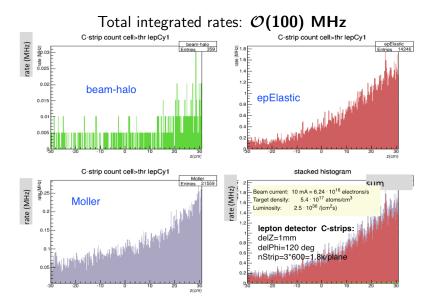
- Signal and QED background
- Elastic electron-proton scattering
- Møller scattering
- Radiative processes

Development of a Radiative Møller Generator

DarkLight has exceptionally high background rates, including radiative processes

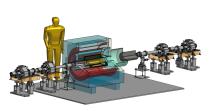
 A radiative Møller/Bhabha event generator is under development

Development of a Radiative Møller Generator


Covers full photon kinematic phase-space:

- Elastic e-e events with soft corrections (Tsai, 1960)
- Hard single-photon bremsstrahlung events

Paper in preparation; code will be made available

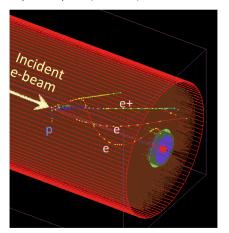

Lepton Tracker Rates

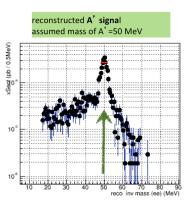
Segmentation of detector reduces readout rates to <2MHz

Readout

Streaming DAQ enables high-rate readout

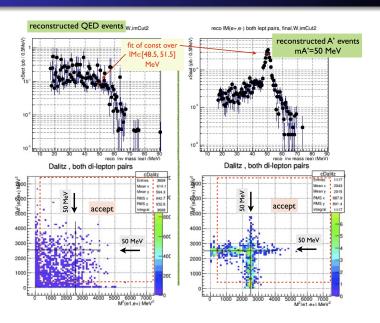
- Stream $50k \times 1$ Byte channels at 40 MHz
- 2 TB/sec raw data input rate


- Make "movie" at 40 MHz
- Read pixels in parallel and recombine into frames
- Online analysis picks interesting frames


"Trigger and camera" \to "Video camera" and post-processing. 2 TB/sec \to $\mathcal{O}(100)$ MB/sec to disk

Tracking and Reconstruction

Tracking and reconstruction algorithms in development¹


$$e p \rightarrow e-p A' (50 MeV) \rightarrow e+e-$$

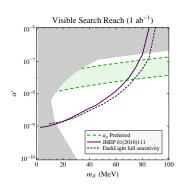
¹J. Balewski, R. Corliss, R. Cowan

Event reconstruction studies

(J. Balewski)

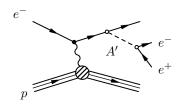
Outline

- Motivation
- 2 DarkLight Overview
- 3 Design Overview
- Software Development
- 5 Status and Summary



Status of Realization

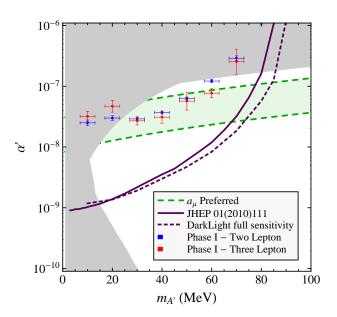
- Full scientific approval from Jefferson Lab received in June, 2013
- January, 2014: NSF MRI proposal submitted for Phase 1 (2015)
- Work in progress to finalize full design by summer 2014


Summary

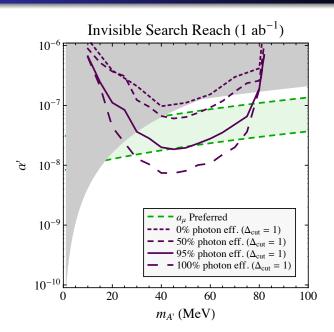
- Dark photon search in 10-100 MeV/c^2 range
- Could explain the $(g-2)_{\mu}$ anomaly

Summary

- Dark photon search in 10-100 MeV/c^2 range
- Could explain the $(g-2)_{\mu}$ anomaly
- Precision test of the process $ep \rightarrow epe^+e^-$



Summary


- Dark photon search in 10-100 MeV/c^2 range
- Could explain the $(g-2)_{\mu}$ anomaly
- Precision test of the process $ep \rightarrow epe^+e^-$
- If Phase 1 funding received \rightarrow 2015
- Full, Phase 2 experiment could take place in 2017

DL Phase 1 Reach

DL Invisible Reach

